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An approach is presented for studying Rossby wave interaction in a shear flow with 
both regular and singular modes (i.e. those possessing a critical level). The approach 
relies on a truncated normal mode expansion of the equations of motion. Such an 
expansion remains valid in the presence of singular modes, provided that these modes 
are not considered individually, but that complete packets are taken into account in 
the truncated system. Mathematically, this means that the interaction equations need 
to be integrated with respect to the phase velocity (or, equivalently, the critical level 
position) of the singular modes. 

The action of two regular modes on a packet of singular modes is treated in 
detail; in particular, asymptotic results are deduced for the long-term behaviour of 
the packet. The case of a linear shear is considered as an illustration: analytical 
expressions are derived for the normal modes and their pseudomomentum, and they 
are used to present explicit results for the evolution of the packet of singular modes. 

1. Introduction 
The presence of a shear flow drastically changes the properties of stable dispersive 

waves propagating in a fluid, and hence modifies the properties of their weakly 
nonlinear interactions (e.g. Craik 1985). A striking modification is the existence of 
positive and negative (pseudo)energy waves (e.g. Ripa 1990), which may lead to 
explosive resonant interaction. This mechanism, which induces a nonlinear instability 
of the shear flow, was first investigated in the context of layered fluid models (Cairns 
1979; Craik & Adam 1979), and its relevance to continuous shear flows has been 
discussed recently (Becker & Grimshaw 1993; Vanneste & Vial 1994). Another 
modification is the existence of a continuous spectrum of singular modes - possessing 
a critical level - in addition to the discrete spectrum of regular modes present in a 
resting basic state. Although the rSle of the continuous spectrum in linear initial-value 
problems (e.g. Farrell 1982; Tung 1983), as well as the forcing of an isolated singular 
mode (e.g. Warn & Warn 1978; Ritchie 1985; see also Maslowe 1986) have been 
much studied, triad interactions involving singular modes seem to have received little 
attention. However, such interactions certainly occur in fluids, and it is of interest 
to develop a proper mathematical description for studying their influence. Grimshaw 
(1988, 1994) considered the rSle of critical levels in wave interactions, but, in his 
work, resonance conditions are only met on certain space-time surfaces, whereas 
here they are met globally. A motivation for considering triads including singular 
modes is provided by a result of Becker & Grimshaw (1993) which indicates that 
such triads are necessary for explosive interaction to exist in a continuously stratified 
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shear flow. Similarly, they may also be invoked for (baroclinic) Rossby waves, and 
therefore be involved in nonlinear baroclinic instability (Romanova 1987; Meacham 
1988; Vanneste 1995). 

Even in the linear domain, the definition and the properties of the singular normal 
modes have long constituted a perplexing issue, because of the many difficulties 
involved in the treatment of singular differential (or integral) equations. Case (1960) 
clarified this issue by showing that the singular modes are required to ensure the 
completeness of the normal-mode basis, and that their superposition leads to regular 
physical fields (see also Tung 1983). Thus the free linear evolution of an initially 
smooth disturbance does not lead to a singularity; rather, a packet of singular modes 
represents a disturbance whose energy decays for large time (possibly after a transient 
growth stage). No extra physical effects such as viscosity or additional nonlinearity 
need, therefore, to be introduced within a particular critical layer. This should be 
distinguished from the evolution of a forced (or an unstable) mode, in which a 
critical layer is created and large amplitudes are attained because a fixed frequency is 
continuously excited (e.g. Warn & Warn 1978; Benney & Maslowe 1975; Brown & 
Stewartson 1979; Maslowe, Benney & Mahoney 1994). Recent work by Kamp (1991), 
and Balmforth & Morrison (1996) has further clarified the free problem by showing 
that the singular modes can be derived from a (regular) Fredholm equation. In the 
non-rotating case, Balmforth & Morrison (1996) have established the completeness 
of the normal-mode basis, as well as its equivalence to Laplace transform theory for 
the linearized equations. Similar results hold when P # 0, and they form the basis of 
our analysis in the nonlinear domain. 

The purpose of this note is to present an approach for treating triad interactions 
involving singular modes. As a specific application, we investigate the influence of two 
interacting regular modes on the continuous spectrum. The physical system analysed 
is the two-dimensional flow in a P-channel - which supports the propagation of 
barotropic Rossby waves ~ but the method as well as the main qualitative results 
can be applied to other fluid systems. Our approach relies upon the fact that the 
normal-mode expansion with suitable orthogonality relations used in Vanneste & 
Vial (1994) and Vanneste (1995) can be used in the presence of singular modes. 
When truncating the system, it is however essential that the singular modes are not 
considered individually but that the entire spectrum corresponding to a given zonal 
wavenumber is taken into account. Mathematically, this means that the interaction 
coefficients related to singular modes must be interpreted as distributions, which make 
sense only under an integral. The physical idea behind this treatment is fairly simple: 
in unforced problems, there is no justification for isolating a particular mode belonging 
to the continuous spectrum from the modes in its vicinity, as their characteristics are 
very similar. In particular, the resonant interaction involving a singular mode cannot 
be dissociated from the non-resonant interaction involving the modes in its vicinity. 
This situation is somewhat analogous to that arising when a mode near marginal 
stability belongs to a triad and cannot be dissociated from the mode with which it 
tends to coalesce (see Romanova 1994). Like their linear evolution, the free nonlinear 
evolution of singular modes does not lead to any finite-time singularity in the physical 
fields, provided that the evolution of a complete packet is described. 

The general ideas of the paper are applied to studying the interaction between two 
regular modes and a packet of singular modes, a member of which forms a resonant 
triad with the regular modes. For simplicity, the amplitude of the regular modes 
is taken as constant so that only their action on the singular modes needs to be 
considered. Starting from an unexcited continuous spectrum, and taking into account 
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the non-resonant interactions, it is shown that the contribution of the singular modes 
leads to smooth velocity and vorticity fields. However, asymptotic results for time 
tending to infinity indicate that these fields tend to a singular structure, which is 
different from that of the single resonant mode. In the same limit, the contribution of 
the singular spectrum to the total pseudomomentum is shown to increase linearly with 
time. These results are illustrated in the case of a linear shear, using the analytical 
solutions that can be derived for both regular and singular modes: calculations for a 
particular triad are described, and compared with the asymptotic estimates. 

The plan of the paper is as follows. The P-plane model and the normal-mode 
theory are reviewed in $2. Section 3 is devoted to the derivation of the interaction 
equations and to their interpretation for singular modes. In $4, general expressions 
are established for the evolution of the streamfunction and pseudomomentum of the 
packet forced by two interacting regular modes, and their asymptotic behaviour is 
discussed. In $5, analytical expressions are given for the normal modes in a linear 
shear, and they are used to illustrate the theoretical results of the previous sections. 
In the final section, extensions of the method and the implications of the results are 
discussed. 

2. Basic equations 
The system under consideration is a barotropic flow on a P-plane, which is governed 

by conservation of the absolute vorticity. A disturbance to a steady parallel flow U ( y )  
obeys the evolution equation 

(2.1) qt + u q x  + Q ’ v x  + a ( ~ ,  4 )  = 0, 

where y is the disturbance streamfunction, q := V2y is the disturbance vorticity, 
Q’ := P - U,, is the meridional gradient of the absolute vorticity of the basic flow, 
and d(y, q )  := yxq, - yyqx is the Jacobian operator. This equation has been rendered 
dimensionless, so that we may assume U ,  := max, U ( y )  = 1 and write the boundary 
conditions as 

yyt dx = 0 at y = 0,l  (2.2) s yx = O  and 

(see e.g. Pedlosky 1987, p. 147). The dimensionless parameter P is then related 
to its dimensional counterpart B through P = E2B/oM, where L and are the 
unscaled channel width and maximum velocity, respectively. Taking advantage of the 
x-invariance of the problem, it may also be assumed that Urn := min, U ( y )  = 0. In 
the x-direction, we consider a (possibly infinite) periodic channel, so that J(.)dx := 

1-1 Ji(.)dx, where 1 is the channel period. 

2.1. Normal modes 

The linear solutions of (2.1) for zonal wavenumber ka are found in the form of normal 
modes 

(2.3) 
where c, =: o a / k a  is the phase velocity. The meridional structure y,(y) satisfies the 
P.ayleigh-Kuo eigenvalue problem 

w = Ya(y)  exp [ k ( x  - cat)] + c.c., 

( U  - Ca)qa + Q’Ya = 0, with ~ ~ ( 0 )  = ya( 1) = 0, (2.4) 
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where q, = Vzy, := (ayv - k;)y,, c, being the eigenvalue?. The overall pattern of 
the normal modes has been described by Drazin, Beaumont & Coaker (1982); here, 
since we consider a stable flow (e.g. assuming 3a such that Q’( U - a )  < 0, V y ) ,  only 
two classes of modes exist: 

(a) A discrete spectrum of regular modes with c, < 0. These modes are identified 
as Rossby waves modified by the basic shear, and satisfy the regular differential 
equation 

Q‘ 
u - c, 

For wavenumber k,, the different modes may be distinguished by an integer n,, so 
that the index a refers to the pair (k,,n,). 

(b)  A continuous spectrum of singular modes with 0 < c, < 1. These modes satisfy 
the singular equation 

where 1, is an arbitrary constant, and ya is the critical level position defined by 
U(y,) = c, (see Kamp 1991). Assuming U’(y)  > 0, V y ,  the different modes can be 
distinguished by y ,  so that a refers to (k,,ya). 

At the critical level y,, the streamfunction of the singular modes is continuous while 
its first derivative - the zonal velocity - has a logarithmic singularity. The constant 
I,, is related to the jump in this derivative according to 

its arbitrariness corresponds to that of the eigenfunction y,, which can be multiplied 
by an arbitrary constant. Choosing A, is thus equivalent to normalizing y,. Without 
loss of generality, we can assume that A,, and therefore va and q,, are real-valued, as 
they will be multiplied by a complex amplitude (see (3.1) and (3.4) below). 

Following Kamp (1991), and Balmforth & Morrison (1996), we interpret the modal 
vorticity as a distribution, and derive from (2.6) the equation 

Here 9 signifies that a Cauchy principal value has to be taken when (2.8) is integrated. 
In what follows, we will perform the integration with respect to y as well as y,; to 
clarify the notation we will then explicitly indicate the dependence of y a , q a ,  etc. on 
y,. With this notation, (2.8) takes the form 

where the subscripts a indicate the dependence on k,. Because Cauchy principal 
values do not necessarily obey the same properties as usual integrals (e.g. Gakhov 
1990) care needs to be exercised when (2.8)-(2.9) are integrated. 

Kamp (1991) and Balmforth & Morrison (1996) proposed an alternative method to 
the singular differential equation (2.6) for deriving the structure of the normal modes. 

These boundary conditions are somewhat restrictive as they exclude the zonal modes with 
k = 0. 
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Their approach starts with the relation between vorticity and streamfunction written 
in the form 

1 

Y&) = 1 Ga(Y; Y’) 4a(Y’) dY’7 (2.10) 

where 

(2.11) - sinh(kay) sinh [k,( 1 - y’)] /(ka sinh k,), 

is the Green function for V:. Introducing (2.8) into (2.10) yields a singular integral 
equation for y,(y), namely 

y < y’ 
Ga(y; Y’) = { - sinh(kay’) sinh [k,( 1 - y)] /(k, sinh k,), y > y’ 

This equation can be regularized by normalizing the vorticity according to 

r l  

(2.12) 

(2.13) 

where V is an arbitrarily chosen constant. It can be seen from (2.8) that V and A, 
are related through 

(2.14) 

so that (2.12) becomes 

which is a regular integral equation of Fredholm type (see Tricomi 1985). 
Exploiting the theory of integral equations, Balmforth & Morrison (1996) examine 

in great detail the general properties of the singular normal modes and their use 
in normal-mode expansions. They discuss specific points, such as the existence of 
homogeneous solutions to (2.15) (i.e. those for which V = 0) and the presence of 
unstable modes (as well as the inflection-point modes, defined by Q’(ya) = 0, which 
constitute their limit). Here, we will ignore these aspects, assuming the sign-definiteness 
of Q’ and hence stability. Furthermore, we will only present the results which are 
necessary for our purpose, namely the derivation of the equations governing the 
weakly nonlinear interactions, and for simplicity we will use a formulation which 
follows as closely as possible the treatment of the regular modes of Vanneste & Vial 
(1994). Proceeding this way, the interaction equations including singular modes will 
appear as a direct extension of those including only regular modes. 

2.2. Orthogonality relations 
The key point in the normal-mode expansion technique is the existence of orthogo- 
nality relations, on which a projection can be based. As recognized by Held (1985), 
these relations are related to the wave-activity conservation laws of (2.1), namely con- 
servation of pseudoenergy and pseudomomentum. Since this is described in detail in 
Vanneste & Vial (1994), and Vanneste (1995) we only summarize the approach, with 
emphasis on the treatment of the continuous spectrum. Moreover, as orthogonality 
in the sense of pseudoenergy and pseudomomentum are equivalent for our purpose, 
only the latter will be used in what follows. 
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The orthogonality of modes with different wavenumber k is obvious from their 

sinusoidal zonal structure; we therefore temporarily focus on the meridional structure 
by considering two modes a and b with ka = k b .  Straightforward manipulation of 
(2.4) yields the relation 

(2.16) 

which is clearly related to the conservation of the pseudomomentum. Indeed, the 
pseudomomentum for the linearized system is given by 

1 

P = -1 J1 [Q’(y)]-’q2dxdy. 
2 

(2.17) 

Orthogonality relations are derived from (2.16). For two regular modes, orthogonality 
is simply given by 

P l  

(2.18) 

where bu,b is the Kronecker symbol, and Pa = - Jt Q’-lq;dy is the pseudomomentum 
of mode a. 

When the modes are singular, a heuristic extension of (2.18) is 

(2.19) 

where d(ya - yb) is the Dirac distribution. However, it is necessary to clarify the 
interpretation of this equation, as the integrand of the left-hand side contains singu- 
larities. Singular modes must be considered as distributions, so that they will appear 
in weighted integrals of explicit form 

(2.20) 

where f(yb) is a continuous function. Thus, for a particular mode a, the orthogonality 
relations will appear as the action of J;’ [Q’(y)]-’qU(y)(.)dy on this integral, i.e. 

(2.21) 

where the order of integration is crucial. (Where confusion may arise, we use brackets 
to indicate the first integral to compute.) Calculations detailed in Appendix A lead to 

I = -Pa f ( Y a ) ,  (2.22) 

where 

(2.23) 

is the pseudomomentum of mode a. With this result, the orthogonality relation (2.19) 
can be clearly defined: in order to isolate one mode by applying (2.19) to (2.20), the 
order of integration in the resulting equation (2.21) must be permuted - regardless the 
singular nature of the integrand - before using the property of the Dirac distribution. 
Indeed, the second term on the right-hand side of (2.23) accounts for the permutation 
(see Appendix A). Note that when 1, is known (e.g. if an analytical solution to the 
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eigenvalue problem is found), the pseudomomentum of the singular modes can be 
evaluated without resorting to any integration. 

Equation (2.19) is just one among the several orthogonality relations derived by 
Balmforth & Morrison (1996) (for B = 0) ;  it corresponds to the orthogonality of 
the singular eigenfunctions with the eigenfunction of the adjoint equation (cf. their 
equation (6.17); see also Vanneste & Vial 1994). Another orthogonality relation is 
that related to the pseudoenergy; a third one is provided by the theory of integral 
equations. These relations are equivalent insofar as normalization factors such as Pa 
are different from 0 or 00, which is the case with the hypothesis we made. 

When a is singular and b regular, we finally remark that 

Jdi 4a(Y)[Q’(Y)I-14b(Y)dY = 0. 

This is established by noting that 

since 0 < c, < 1 and cb < 0. 

3. Interaction equations 
Consider now a normal-mode expansion of the form 

q(x,y,t) = C~s( t )qs(~)exp[ iks(x-c , t ) l  + CAr(t)qr(y)exp[ikr(x -crt)l,  (3.1) 
S r 

where s and r denote the singular and regular modes, and where the summations are 
defined according to 

in the case of an infinite channel. If the channel is periodic, Ck should replace 
J-’,” dk. The reality of q is ensured by considering together the physically equivalent 
modes a (k, ,c,)  and -a (-k, ,c,)  with A-,(t)  = [Aa(t)]*. First note that the expansion 
(3.1) is an exact solution of the linearization of (2.1) with A,(t) = A,(O) for each mode 
a (the amplitudes can be derived from the initial conditions using the orthogonality 
relations). This can be used to show in a straightforward fashion that the pseudomo- 
mentum P is an exact invariant for the linear system; indeed, introducing (3.1) into 
(2.17), and using (2.18)-(2.19) we obtain 

For the nonlinear system, P is the lowest-order (quadratic) part of the pseudo- 
momentum discovered by Killworth & McIntyre (1985), and it can be shown that 
dP/dt = O(A3). 

For applications, using the expansion of the streamfunction rather than the ex- 
pansion the vorticity is often preferable, since the first contains no Cauchy principal 
value. However, owing to the presence of a singular integral in the expansion (3.1) 
(see (2.8)), it may not be obvious whether the streamfunction, implicitly defined by 
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V’y, = q, can be expanded in a similar fashion as (3.1). That this is in fact the case 
can be checked by noting that for the packet of singular modes corresponding to 
each wavenumber k,, 

1 

v(Y) = 1 Ga(y; Y’)q(Y’) dy’ 

1 1 

= 1 Aa(t; Ya) exp [ika (x - u(ya)t)l dya [ 1 Ga(y; y’)qa(Y’; Y a )  dy’] 

1 

Aa(t; yu)Wa(y; Y a )  ~ X P  [ika (x - U(~a) t ) l  dya. =L 
Here, the change of the order of integration is allowed as only one integral is singular 
(e.g. Gakhov 1990). Therefore, we can write 

Y ( X ,  Y, t )  = C ~ s ( t ) ~ s ( ~ )  exp[iks(x - cst)~ + CAr(t)Yr(y) exp[ikr(x - crt)~.  (3.4) 
S r 

Once the streamfunction is calculated, the vorticity is derived from V2y = q. 
Introducing the expansions (3.1) and (3.4) in the governing equation (2.1), and 

taking into account the orthogonality relations (2.18) and (2.19), we can transform 
the partial differential equation into a infinite set of ordinary differential equations. 
This set is discrete in the regular modes (a = r) and continuous in the singular modes 
(a = s). These equations can be formally written as 

where fiabc = (31, + (3Ib + CL), is a detuning parameter, and 
” 1  

(3.5) 

J o  
is the interaction coefficient. Here, d(yb,q,) designates a Jacobian in which (2.3) has 
been introduced, i.e. d(t&, 4,) = ikby,bqc,y - ikcy,b,yqc, so that I,b. is real. The right-hand 
side of (3.5) includes all modes satisfying the interaction condition 

k a  + k b  + k,  = 0, (3.7) 

and thus includes both regular and singular modes, the corresponding summations 
being those defined in (3.2). 

Equations (3.5)-(3.6) are similar to those derived by Ripa (1981) for waves in a 
resting medium, and by Vanneste & Vial (1994) for regular waves in a shear flow. 
However, the interaction coefficient (3.6) is purely formal when b and/or c are singular 
modes. Therefore, an interpretation of (3.5) is necessary, i.e. we must state the order 
in which the integrations contained in (3.5) are to be carried out. This order is fixed 
by the procedure leading to (3.5): packets of modes b and c are first introduced in the 
nonlinear term of (2.1) before the equation is projected on mode a in order to isolate 
the evolution of A,. Integrations with respect to yb and y, are thus performed before 
the integration with respect to y. Therefore, when evaluating (3.5)-(3.6), the order of 
integration must be permuted for the evolution equation of A,  to be correct; this rule 
can be seen as part of the definition of I F .  
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For instance, consider a triad a,b,c, where a and c are regular modes, and b 
In this corresponds to a packet of singular modes such that (3.7) is satisfied. 

particular case, the contribution of b and c to dA,/dt takes the explicit form 

where 

@ := ~l&(t ;yb)~b(y ;yb)exp  [-ikbU(yb)tl dyb, 

and 
1 

4 := Ab(t; yb)qb(y; yb) exp [-ikbU(yb)tl dyb = vi@ 
are the streamfunction and vorticity of the entire packet of singular modes with 
wavenumber k b .  This expression shows what is meant by (3.5)-(3.6); the latter 
equations may thus be regarded as a shorthand notation for a lengthy expression 
that is obtained through a conventional permutation of operators. Once the complete 
expression is written down, further changes of the order of integration can be carried 
out, but the permissibility of such operations must be checked (the Poincark-Bertrand 
transposition formula must be used when two singular integrals are permuted (e.g. 
Gakhov 1990)). 

When a is a singular mode, its time derivative will always contain a Cauchy 
principal value, owing to the projection Ji q,Q’-’(.)dy. In the expansions (3.1)-(3.4), 
the amplitude A,(t)  is never considered as isolated, but rather appears inside integrals 
over y,. As will become clear in the next section, this can be exploited to replace the 
principal value by an ordinary integral. 

In principle, the time evolution of the mode amplitudes A,(t) could be obtained by 
solving the coupled system of equations (3.5), and then the vorticity and streamfunc- 
tion could be deduced from (3.1) and (3.4). However, the use of the normal-mode 
expansion including singular modes presents formidable technical difficulties if a large 
number of modes are retained, and it is undoubtedly not suited for efficient numer- 
ical simulations. Standard spectral methods, which are based on complete sets of 
orthogonal modes do not yield exact solutions of the linearized equations; however, 
by contrast with the normal modes, these sets are countable, and this certainly consti- 
tutes an advantage for numerical applications. Nevertheless, insight into the weakly 
nonlinear behaviour of a model may be gained by studying severe truncations of the 
equations (3.5). When truncating the system, it must be kept in mind that a complete 
packet of singular modes must be taken into account as soon as one singular mode 
with the corresponding wavenumber is selected. The members of a wave triad are 
therefore either regular modes or complete packets of singular modes. 

4. Interaction of two regular modes with a packet of singular modes 
We now turn to the detailed analysis of the formation of a packet of singular modes 

by two interacting regular modes. Let a designate all the singular modes of zonal 
wavenumber k,, and let b and c designate two regular modes, satisfying the interaction 
condition (3.7). For moderate mode amplitudes, the interaction is significant only if 
b and c constitute a resonant triad with a particular singular mode of the packet a, 
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c 

1 

0 
0 1  

FIGURE 1. A schematic view of the interaction between two regular modes and a packet of singular 
modes for a periodic channel. The dispersion relation is represented in the (k,c)-plane: the circles 
with c < 0 denote the regular modes, and the vertical lines with 0 < c < 1 denote the continuum of 
singular modes corresponding to each zonal wavenumber. The interaction involves the two regular 
modes b and c (solid circles), and the entire packet of singular modes a (thick vertical line). A 
particular singular mode a‘ constitutes a resonant triad (represented by the dashed triangle) with b 
and c. 

denoted by the superscript r ,  i.e. 

a: + + wc = 0 (4.1) 

(see figure 1). Together with the fact that the resonant mode (with wavenumber 
k,  and frequency a;) belongs to the continuous spectrum of singular modes, this 
equation dictates a condition on b and c, namely 

Note that, because of the continuous character of the singular mode spectrum, 
resonant triads including singular modes are much more numerous than resonant 
triads including regular modes only. For simplicity, we assume A,(O) = 0, and 
I&I,lAcl >> (A,I for all 0 < y, < 1. It follows from the latter assumption that 
the amplitudes Ab and A, remain approximately constant (i.e. the feedback of the 
singular modes on the regular modes can be neglected); therefore we can focus on 
the evolution of the packet of singular modes a. The evolution of Ab and A, could, 
however, be obtained without conceptual difficulties, as described in the previous 
section. Besides its illustrative interest for the theoretical concepts of $3, the very 
simple problem examined here can be viewed as a paradigm for the interactions 
between singular and regular modes: the entire packet of singular modes must be 
retained in the truncated system. While it could be thought that the interaction of 
two regular modes with singular modes can be analysed solely in terms of resonant 
interactions, as is done with regular modes, we shall show that the non-resonant 
interactions play a fundamental r6le: they act in such a way that the streamfunction 
and the vorticity of the packet remain smooth functions of y for all times. 
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The evolution equation for the amplitude A, is given by 

327 

and is readily integrated to yield 

(4.3) 

where we have taken into account (4.1) and the initial condition A,(O) = 0. From 
(3.4), one sees that the streamfunction can be written as (twice the real part of) 

y = AiA: exp [ik, (x - cit)] @(y, t) ,  (4.4) 

where the meridional and temporal structure depends on q7 given by 
1 

@(Y7 t) = 1 P y . l a ( Y ;  ya)ga(t; Y J  dY,? (4.5) 

with 
1 - exp [-i (w, - w;) t] 

co, - w; g,(t;yJ := 

Using the definition (3.6), we find 

where 

fbc(y’) := i[Q’(~’)l-’ [d(Yb7 4 c )  -k ~ ( V C ,  q b ) ]  
depends solely on the regular modes. As (4.6) contains a single singularity (namely 
that of qa(y’;ya)), the order of integration can be changed. Further, the Cauchy 
principal value can be avoided by integrating by parts with respect to y’ and noting 
that fbc(0) = fbc(  1) = 0 to obtain 

where V’: := dyty, - k;. The latter integral only involves regular terms and can thus 
be evaluated accurately by standard methods, as is done in the next section. Together 
with (4.4), it gives a convenient form for the streamfunction, from which the vorticity 
is derived by applying Vi. The pseudomomentum of the packet of singular modes a is 
a useful physical quantity: in the linear approximation, it is quadratic and conserved, 
and it is dissociated from the pseudomomentum of regular modes with the same 
wavenumber. Collecting (3.3), (3.6), and (4.3), and applying integration by parts 
yields this pseudomomentum in the form 

It is fruitful to examine the asymptotic behaviour of the packet streamfunction and 
vorticity for t << 1 and t >> 1. This behaviour is obviously governed by the form 
of g,(t;y,). For t << 1, g,(t;y,) fi: i t  does not depend on the mode y,; hence all 
modes grow simultaneously. The streamfunction and the vorticity of the packet of 
singular modes then increase linearly with time, while the pseudomomentum evolves 
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like t2. This evolution is the same as that experienced by a regular mode forced by 
resonant interaction, as long as its influence on the other two members of the triad 
remains negligible. As time increases, ga( t ;  y,) peaks around the resonant mode (with 
phase velocity c; and critical level at y:), and the evolution of the packet slows down. 
For sufficiently small amplitudes of the regular waves Ab and A,, there is a range 
of t in which the condition t >> 1 is consistent with the assumption of constant of 
amplitudes?. Calculations detailed in Appendix B provide the asymptotic form of the 
streamfunction, 

Together with (4.4), this equation indicates that the streamfunction (and equiva- 
lently the velocity and the vorticity) tends to a steady wave propagating with the phase 
velocity of the resonant mode, c;. Perhaps surprisingly, the corresponding meridional 
structure is not simply given by the meridional structure of the resonant mode (first 
term on the right-hand side of (4.9)), but it also contains a smooth contribution 
(second term on the right-hand side of (4.9)), which involves the entire packet of 
singular modes. This latter contribution is in fact only piecewise smooth, the vorticity 
undergoing a jump at y:. Near y:, the asymptotic zonal velocity and vorticity are 
dominated by the structure of the resonant mode, and thus have singularities of the 
form In ly - y;l and l / ( y  - y:), respectively. As will clearly appear in the particular 
case presented in the next section, the zonal velocity is smooth for finite time, but 
it develops a peak at y: which sharpens as time increases. (There is an analogous 
behaviour for the vorticity.) Of course, the hypothesis of weak nonlinearity we have 
made breaks down when the amplitudes become too important; to study the long- 
term evolution of the flow, the action of the singular packet on the regular modes 
must be taken into account. If the initial amplitudes of the regular modes are very 
strong, the system (3.5) should be considered with a less severe truncation than the 
one adopted here, and possibly viscosity needs to be included. 

The pseudomomentum for t >> 1 is given at leading order by (see Appendix B) 

(4.10) 

The magnitude of the pseudomomentum of the packet thus increases linearly with 
time, i.e. slower than the pseudomomentum of a regular mode in a similar situation. 
The unbounded growth of P is consistent with the fact that the asymptotic state given 
by (4.9) has a singular vorticity structure, and hence an infinite pseudomomentum. 
Note that by contrast with (4.9), (4.10) depends only on the structure of the resonant 
mode. 

t Specifically, the asymptotic expansion is valid for t >> l / m i n ( ~ u ~ ~ , ~ k a  - mil) (i.e. for 
t >> l/[lk,lmin(cL - U,, UM - c:)], see Appendix B); on the other hand, Ab and A,  are ap- 
proximately constant for t << 1/ max(lA#, [A,12). Therefore, for sufficiently small amplitudes Ab 
and A,, both conditions can be satisfied. 
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5. Application to a linear shear flow 
To illustrate the general results of the previous section, we investigate the particular 

case of a linear shear U(y) = y in a channel. In this case, Q' = p and the critical level 
location is simply y = c. As most previous work has concerned unbounded or semi- 
bounded domains (see Tung 1983), or does not focus on the eigenvalue problem, we 
now present analytical solutions for both the regular and the singular normal modes. 
Although these analytical expressions are not required to apply the formulae of 9924, 
they permit a direct calculation of the streamfunction and vorticity for arbitrarily 
chosen values of the critical level location, and hence an accurate evaluation of 
the required integrals. Furthermore, we establish an analytical expression for the 
pseudomomentum of the singular modes, which enable us to avoid singular integral 
evaluations. 

5.1. Normal modes 

Consider first the regular modes, i.e. those with c < 0. They satisfy the eigenvalue 
problem (2.5), which takes the form 

$+ ( & - k 2 ) l y = 0 ,  with y ( O ) = y ( l ) = O ,  

where we have temporarily simplified the notation by suppressing the mode index. 
Without loss of generality, we may assume k > 0 in the calculation of the eigensolu- 
tion. Introducing the new variable 

Z, := 2k(y - C) 

depending on both y and c, the solution to (5.1) may be expressed in terms of 
confluent hypergeometric functions, or equivalently in terms of Whittaker functions 
(e.g. Erdtlyi et al. 1953; Slater 1960) according to 

(5.2) w = ' 4wc,1 /2(ZC)  + BMK,1/2(Z,), 

where IC := Pl(2k). Note that the solutions involved in (5.2) are linearly dependent 
when IC is an integer (Erdelyi et al. 1953); therefore, we assume that IC is non-integer 
so as to avoid difficulties associated with the definition of the branch cut in the 
fundamental system of solutions given in Erdklyi et al. (1953). Analytic continuation 
of the final results could be invoked to deal with this particular case. Denoting by 
z , , ~  := z,(O) and zC,1 := z,(l) the boundary values of z,, (5.2) leads to a non-trivial 
solution to the eigenvalue problem (5.1) when 

This is an implicit form of the dispersion relation, which gives for each wavenumber 
k a finite number of phase velocities c < 0. When (5.3) is satisfied, the solutions of 
(5.1) can be written 

w = A [MK,1/2(Z,,O)WK,1,2(Z,) - W,,1/2(Z,,O)M,,1/2(Z,)] . (5.4) 

Consider now the singular modes, i.e. those with 0 < c < 1, with critical level at 
z, = 0. They satisfy the singular eigenvalue problem 

d2y, + ( - k2) y~ = AS(y - c), with ~ ( 0 )  = w(1) = 0, (5.5) 
dy Y - C  
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whose solution can be written in a piecewise form as 

A - M , 1 / 2 ( Z c )  + B- W-ti,1/2(-Zc), Y < c 
Y > c . Y = {  A + m , l / 2 ( z , )  + B+WK,1/2(Z,),  

The continuity of the pressure across the critical level can be written in terms of the 
variable z, as 

Y K - )  = Y(O+). (5.6) 
It implies that 

The constants A- and A+ are related to B- and B+, respectively, when the boundary 
conditions are taken into account. Finally, the streamfunction of the singular modes 
is given by 

r ( 1 -  K)B- = r(l +tip+. 

A r ( 1  + ~ ) ~ t i , l / 2 ( Z c , l )  [ ~- t i , 1 /2 ( -Zc ,o )~ t i , 1 /2 (Z , )  

(5.7) 
- M ,  1,2 (z,,o 1 w - , 1 / 2  ( -zc I] > 

- ~ t i , 1 / 2 ( z , 1 ) ~ t i , 1 / 2 ( z c ) ]  > Y’C 

Y < C  

Y = {  A r(1 - ~)Mti,1/2(ZC,O) [Wti,l/2(Z,l)Mti,1/2(Z,) 

Near the critical level, the corresponding zonal velocity and vorticity are singular like 
In Iz,I and l/zc,  respectively. 

It is essential to determine the value of A corresponding to the solution (5.7). 
Calculations detailed in Appendix C give 

l = - A f l q ,  (5.8) 

where q is complicated expression given by (C 1). The asymptotic expansion of the 
Whittaker functions also provides the value of the streamfunction at the critical level: 

Y(C) = -AMti,1/2(Zc,o)~ti ,1/2(Z,,1).  

Note that because of the p-effect this expression may vanish for certain c. Introducing 
these results in (2.23), we get an analytical expression for the pseudomomentum of 
the singular modes in the form 

(5.9) 

We have verified for several different cases that the analytical results (5.7)-(5.9) are 
consistent with the numerical solutions derived from the integral-equation approach 
of Kamp (1991) and Balmforth & Morrison (1996). In this approach, l is given by a 
singular integral, according to (2.14). 

5.2. Nonlinear interaction 

We present here explicit results on the action of two regular modes b and c on a 
packet of singular modes a in a linear shear. As a typical case, we choose f l  = 40 
(weak shear); the selected wavenumbers are 

k ,  = 2.1, kb = -2.7, k,  = 0.6, 

which satisfy the interaction condition (3.7). The streamfunctions of the singular 
modes with 0 < c, < 1 are displayed in figure 2 for four distinct values of c,. Regular 
modes are defined not only by their zonal wavenumber, but also by the number of 
zeros of the streamfunction in the range y ~ ] 0 , 1 [ .  We consider here the mode b with 
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FIGURE 2. Streamfunction of the singular modes in the linear shear with j = 40, for k, = 2.1, and 
c,  = 0.2,0.4,0.6,0.8 (with increasing line width). The normalization corresponds to Pa = -1. 

one zero, and the mode c without a zero. Numerically solving for the corresponding 
roots of (5.3) yields the frequencies 

ob = 1.135, Uc = -2.053, 

so that (4.2) is satisfied with c; = 0.437, and thus o: = 0.918. Figure 3 displays the 
streamfunctions of the regular modes b and c, and of the resonant singular mode a'. 

To calculate expressions (4.7)-(4.10), the first step is the evaluation of the pseudo- 
momentum density Pa according to (5.9). An accurate calculation of this density turns 
out to be crucial for the final results: in some sense (see Ripa 1990), Pa corresponds 
to the weight of each singular mode in the packet. We have chosen to directly 
normalize the streamfunction so that Pa = -1 for all the singular modes; this is done 
by a proper choice of the arbitrary amplitudes A,, according to (5.9). (Note that the 
pseudomomentum of the singular modes is negative as > 0; their pseudoenergy 
E,  = cap, is therefore negative, by contrast with that of the regular modes.) While the 
final results are independent of the (arbitrary) normalization chosen for the singular 
modes, they do depend on the physical amplitude of the regular modes, which can be 
measured by their pseudomomenta PbIAbl2 and P,IAJ2. As this dependence consists 
of a simple scaling, we take pb = P,. = -1 and Ab = A, = 1. 

The streamfunction of the packet of singular modes, given by (4.7), can then be 
computed for any time t. The numerical integration is carried out using a uniform 
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FIGURE 4. Amplitude of the streamfunction of the packet of singular modes for t = 1,2,5 
(with increasing line width), and t >> 1 (dashed curve). 

20 

0 '  I I 
0.30 0.45 0.60 

Y 

FIGURE 5. Amplitude of the zonal velocity of the packet of singular modes for t = 20,40,100 
(with increasing line width), and t >> 1 (dashed curve). 

grid in the (y,y,)-plane (typically 150 x 150). We have confirmed that the results are 
insensitive to the grid size. Figure 4 presents this streamfunction for t = 1,2,5, as 
well as the asymptotic steady state (4.9) obtained for t >> 1. For finite times, the 
streamfunction is smooth, while for t + co, it possesses a vertical tangent at the 
critical level of the resonant mode y = c:, as explained in $4. In fact, after t w 20 
the streamfunction is close to its asymptotic structure almost everywhere, except in 
a narrow vicinity of y = c:, where it steepens continually and only slowly tends to 
the asymptotic structure. Correspondingly, the zonal velocity and vorticity peak at 
y = c:, with an increasing amplitude of the peak. This can be seen from figure 5,  
which shows the amplitude of the zonal velocity D = dq,/dy at t = 20,40,100, and 
for t + 

The pseudomomentum, which is simply proportional to the enstrophy, can be 
calculated from (4.8), and its evolution is displayed in figure 6. The asymptotic results 
for t << 1 (which is obtained by introducing the approximation g,(t;y,) = i t  in (4.8)) 
and for t >> 1 are also shown, and can be seen to provide useful estimates for the 
pseudomomentum. We have also calculated the pseudomomentum from its basic 
form (2.17); this constitutes a good check for (4.8). 

in the vicinity of the critical level of the resonant mode. 
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FIGURE 6. Evolution of the pseudomomentum of the packet of singular modes (solid curve). 
The quadratic approximation for t << 1 (short-dashed curve) and the asymptotic slope for t >> 1 
(long-dashed curve) are also displayed. 

6. Discussion 
Interactions in triads of dispersive waves constitute an important process in the 

weakly nonlinear dynamics of fluid flows, and in spite of the considerable simplifi- 
cations they imply, their significance is well established, in particular for geophysical 
flows. As the presence of a basic shear flow modifies the properties of the waves, a 
natural question concerns the way it affects the properties of the interactions. Part of 
the answer is provided by work on layered models (e.g. Cairns 1979; Craik & Adam 
1979; Vanneste 1995), and recent work on continuous models (Becker & Grimshaw 
1993; Vanneste & Vial 1994). The r8le of the continuous spectrum of singular modes 
present in continuously sheared flows, which seems to have received little attention in 
the context of triad interactions, is addressed in this paper. Specifically, it is shown 
that on the basis of a simple model of Rossby waves, the normal-mode expansion, 
conventionally used for waves propagating in a resting basic state, is also suitable for 
dealing with the continuous spectrum of singular modes. The essential point, justified 
both mathematically and physically, is that complete packets of singular modes of 
a given wavenumber need to be considered. The advantages of the normal-mode 
expansion (Ripa 1981) are thus preserved in the presence of a continuous shear and 
its associated spectrum of singular modes, even though some technical difficulties will 
arise. The properties of the singular normal modes in the flow considered have been 
studied in depth by Kamp (1991) and Balmforth & Morrison (1996); our work can 
be viewed as an extension of their results to the nonlinear domain. 

The interaction of two regular modes with a packet of singular modes is treated in 
detail to illustrate the usefulness of the approach. With the assumption of constant 
amplitude for the regular modes, this problem may be regarded as a forced problem 
for the packet of singular modes; but it is very different from that usually studied 
(see Maslowe 1986), as the forcing is not limited to a boundary. The results clarify 
the crucial r81e of the non-resonant interactions, as can be seen in particular from 
the asymptotic result (4.9). To deal with the full initial-value problem set by the 
interaction of a triad consisting of two regular modes and a packet of singular modes, 
the coupled action of a regular mode and the singular packet on the second regular 
mode should also be taken into account. This is certainly feasible using our approach, 
but would require a substantial amount of calculation. In the nonlinearly stable flow 
we have analysed, the feedback of the singular packet on the regular modes can be 
expected to reduce the amplitude of the latter, and therefore to limit the development 
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of the critical layer obtained when the assumption of constant amplitude is made for 
the regular modes. 

Various problems in which the rSle of the continuous spectrum of singular modes 
deserves investigation can be suggested. A first one concerns the stability of regular 
waves to disturbances consisting partly of singular modes. A second one, mentioned in 
the Introduction as a motivation for the present work, concerns the explosive resonant 
interaction and the related nonlinear instability of shear flows. In addition to Becker 
& Grimshaw’s result (1993) which reveals the necessity of singular modes for explosive 
interaction, it may be pointed out that the relevance of singular modes to certain 
instabilities of stratified flows is strongly suggested by the fact that disturbances with 
small vertical scale preclude nonlinear stability of such flows (Abarbanel et ul. 1986; 
see Ripa 1990; Shepherd 1992). For triads of regular modes, these two problems are 
mainly analysed in terms of resonant interaction. In resonant triads, the quadratic 
parts of the pseudoenergy and of the pseudomomentum (explicitly, PaIAaI2 + P b l A b I 2  -k 
P, IA, 12) are conserved. Consequently, relations among the interactions coefficients, 
the wavenumbers and the mode pseudomomenta (or equivalently, the frequencies and 
the mode pseudoenergies) are found, which constitute the basis of the criteria for 
wave instability and explosive interaction (see Ripa 1981; Vanneste & Vial 1994). The 
extension of these criteria to singular modes is not straightforward : non-resonant 
interactions must then be taken into account, so that the quadratic parts of the 
pseudoenergy and of the pseudomomentum are not necessarily conserved, and the 
interaction properties become more complex. As an example of this complexity, it can 
be mentioned that singular modes with positive and negative pseudomomentum exist 
for any wavenumber if Q(y) is non-monotonic (see (2.23)). Any packet of singular 
modes will thus systematically involve modes with pseudomomentum of both signs. 
Clearly, much progress still needs to be made for completely understanding the r81e 
of the continuous spectrum in nonlinear interactions, and we hope the approach 
presented in this paper will prove useful in this respect. 

The author wishes to thank G. Brunet for fruitful discussions. Comments of K. 
Ngan, and P. Ripa on an early version of the manuscript are much appreciated. Part 
of the work reported in this paper was carried out at the Laboratoire de Mktiorologie 
Dynamique du CNRS, where the author enjoyed stimulating conversations with F. 
Lott, H. Teitelbaum, and F. Vial. The support from a NATO fellowship is gratefully 
acknowledged. 

Appendix A. Orthogonality of singular modes 
Introducing (2.9) in (2.21) yields 
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The first two integrals can be combined by changing the integration variable in the 
second from y to yb to give 

Following Balmforth & Morrison (1996), we can use the Poincark-Bertrand trans- 
position formula (e.g. Gakhov 1990) to change the order of integration in the last 
integral. It now becomes 

Note that the integration with respect to Yb is now defined in the usual sense, so that 
no P symbol is needed. Gathering (A2)-(A3), we see that the integrals cancel, as 
their sum is 

which vanishes after integration by parts. Introducing this result in (A l),  we finally 
obtain 

Appendix B. Asymptotic results for t >> 1 
Consider the limit of the second integral involved in (4.7) for t + co, i.e. 

I+co lim 6’ CPa(Ya)l-lWa(Y; Ya)wa(Y’; ya)ga(t; Ya) dya. 

Introducing v := ou-coL, and h := [k,P,(y,)]-’~~(y;y,)~~(y’;y,) which can be viewed 
as a function of v, this limit takes the form 

1 - cos(vt) sin(vt) 
t+m lim 1; h(v) [ V +i-] V dv, 

where the boundaries are v, = -coL and VM = k, - co:. Without loss of generality 
we may assume k ,  > 0, so that v, < 0 and V M  > 0 (see (4.2)). Noting that 
limt+m sin(vt)/v = 7cd(v), the imaginary part of (B 1) is readily obtained as 

sin( v t )  
lim 1; h( v )  - dv = zh(0). 
t+w I, 

The real part of (B 1) is derived using the equality 
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For large t ,  the first two terms are O(1) while the third is O(t- ')  and can therefore be 
neglected. The second term is calculated according to ./c.'" 1 - c;s(vt) vy 1 - cos(vt) 

dv 

where Ci(x) is the cosine integral, which vanishes in the limit x --t +oo. Collecting 
(B 2)-(B 3) yields the final result 

1 - cos(vt) + i- sin(vi)] dv = /"v~v h ( v )  - 
dv +h(O) [In (x) + in] . 

V V V -Vm t+m 

Using the definitions of h, v ,  vm, and v,, and introducing the latter expression in (4.7) 
provides the structure of the streamfunction given by (4.9). 

The long-term behaviour of the pseudomomentum P ,  given by (4.8), is governed 
by the asymptotic form of 

which may be written 

where 
1 2 

j ( v )  := [kapa(Ya)l-1 [l va(Y'; .h)V 'k&' )  W] . 

Examination of (B 5 )  suggests a linear time-dependence for t >> 1 ; hence we calculate 
its approximation in the form 

sin(vt/2) sin(vt/2) 
dv . 

Noting that limr+m sin(vt/2)/(v/2) = n6(v/2), and limt+m,v+O sin(vt/2)/(vt/2) = 1, we 
finally obtain 

and hence (4.10). 

Appendix C. Calculation of R in a linear shear 
In order to evaluate (2.7) for the particular solution (5.7), we must expand the latter 

in the vicinity of the critical level. The asymptotic forms of the Whittaker functions 
are (e.g. Slater 1960) 

Mc,1/2(Z,) = zc + O(z,2), 
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where Y ( . )  is the digamma function, and y is the Euler constant. Introducing these 
expressions in (5.7), we get the expression for the streamfunction for y > c: 

y+ = --AM,1/2(Zc,o) [MK,1/2(ZC,1)(1 - KZC Inzc) + 6+zc] + O(Z,2 Inzc), 

6+ = K r(-4Wti,1/2(Zc,l) - MK,1/2(Z,,l) Y(1 - - 1 + 2Y + - . 

y -  = -AMti,1/2(Z,,1) [Mti,1/2(Z,,O) (1 - KZC M-4)  + 6-zc] + 0 (Zc2 M - z c ) )  > 

where 

{ [ 2K 11 

{ 2K 11 

Similarly, we obtain the streamfunction for y < c: 

where 

6- = --Ic r(K)Kc,1/2(-zC,o) + Mti,1/2(Zc,O) Y(1 + K )  - 1 + 2Y - - . 

With these results, (2.7) becomes 

with 
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